TRB PG Mathematics New Syllabus 2025

 TRB PG Mathematics New Syllabus 2025

Unit I               ALGEBRA 

                      Groups – Examples – Cyclic Groups – Permutation Groups – Lagrange’s theorem –Normal subgroups – Homomorphism – Cayley’s theorem – Cauchy’s theorem –Sylow’s theorems – Finite Abelian Groups.

                      Rings – Integral Domain – Field – Ring Homomorphism – Ideals and Quotient Rings – Field of Quotients of Integral domains – Euclidean Rings – Polynomial Rings – Unique factorization domain. Fields – Extension fields – Elements of Galois theory – Finite fields.

                      Vector Spaces – Linear independence of Bases – Dual spaces – Inner productspaces – Linear transformations – Rank –   Characteristic roots – Matrices – Canonical forms – Diagonal forms – Triangular forms – Nilpotent transformations – Jordan    form – Quadratic forms and Classification – Hermitian, Unitary and Normal transformations.

Unit II             REAL ANALYSIS 

                      Elementary set theory – Finite, countable and uncountable sets – Real number system as a complete ordered field –   Archimedean Property – Supremum,infimum, Sequences and Series – Convergence – limit supremum – limit infimum – The                                  Bolzano – Weierstrass theorem – The Heine – Borel Covering theorem – Continuity, Uniform Continuity, Differentiability – The Mean Value theorem for derivatives – Sequences and Series of functions – Uniform convergence. 

                      Riemann – Stieltjes integral: Definition and existence of the integral –properties of the integral – Integral and Differentiation – Integration of vector valued functions – Sequences and Series of functions: Uniform convergence – Continuity, Integration and            Differentiation. Power series – Fourier series.      Functions of several variables – Directional derivative – Partial derivative – derivative as a linear transformation – The Inverse                                function theorem and The Implicit function theorem. 

Unit III            TOPOLOGY

                      Topological spaces – Basis – The order Topology – The product Topology – The subspace Topology – Closed sets and limit points.

                      Continuous functions – The box and product Topologies – The matrix Topology.

                      Connected spaces – Connected subspaces of the real line – Components and local connectedness – compact spaces – Compact subspaces of the real line – Limit point compactness – Local compactness.

                      Countability and separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohn metrization theorem – The Tietze extension theorem.

Unit IV            COMPLEX ANALYSIS

                      Introduction to the concept of analytic function: Limits and continuity – Analytic functions – Polynomials and rational functions –  Elementary theory of power series – Maclaurin’s series – Uniform convergence – Power series and Abel’s limit theorem – Analytic    functions as mapping – Conformality arcs and Closed curves – Analytical functions in regions – Conformal mapping – Linear transformations – the linear group, the cross ratio and symmetry.  Complex integration – Fundamental theorems – line integrals – rectifiable arcs – line integrals as functions of arcs – Cauchy’s theorem for a rectangle – Cauchy’s theorem in a Circular disc – Cauchy’s integral formula: The index of a point with respect to a                            closed curve – The integral formula – Higher derivatives – Local properties of Analytic functions and removable singularities –                              Taylor’s theorem – Zeros and Poles – The local mapping – The maximum modulus Principle.

Unit V             FUNCTIONAL ANALYSIS

                      Banach Spaces – Definition and examples – Holder’s inequality and Minkowski’s inequality – Continuous linear transformations –                          The Hahn-Banach theorem – Natural imbedding of X in X** – The Open mapping and The Closed graph theorem – Properties of                            conjugate of an operator.

                      Hilbert spaces – Orthonormal bases – Conjugate space H* – Adjoint of an operator – Projections – Matrices – Basic operations of                          matrices – Determinant of a matrix – Determinant and Spectrum of an operator – Spectral theorem for operators on a finite                                dimensional Hilbert space – Regular and Singular elements in a Banach Algebra – Topological divisor of zero – Spectrum of an                              element in a Banach algebra – The formula forthe spectralradius – Radical and semi-simplicity. 

Unit VI            DIFFERENTIAL GEOMETRY

                      Curves in spaces – Serret – Frenet formulae – Locus of centers of curvature – Spherical curvature – Intrinsic equations – Helices –                      Spherical Indicatrix Surfaces – Curves on a surface – Surface of revolution – Helicoids – Gaussian curvature – First and Second                            fundamental forms –Isometry – Meusnier’s theorem – Euler’s theorem- lines of curvature – Dupin’s Indicatrix – Asymptotic lines –                        Edge of regression – Developable surfaces associated to a curve – Geodesics – Conjugate points on Geodesics.

Unit VII           DIFFERENTIAL EQUATIONS

                         Ordinary Differential Equations

                      Linear differential equation with constant and variable co-efficients – Linear dependence and independence – Wronskian – Non                            homogeneous equations of order two and n – Initial value problems for nth order equations – Second order equations with                                    ordinary  point and regular singular points – Legendre Equations – Bessel’s equation – Hermite’s equation and their properties –                            Existence and Uniqueness of solutions to first order equations – Exact equation – Lipschitz condition – Non local existence of                              Solution – Approximation to Uniqueness of solutions.

                         Partial Differential Equations

                      Lagrange and Charpit methods for solving first order Partial Differential equations – Classification of Second order partial                                      differential  equations – General solution of higher order partial differential equation with constant co-efficients – Method of                                separation of variables for Laplace, Heat and Wave equations (upto two dimensions only).

Unit VIII         CLASSICAL MECHANICS AND NUMERICAL ANALYSIS

                         Classical Mechanics

                      Generalised Co-ordinates – Lagrange’s equations – Hamilton’s Canonical equations – Hamilton’s principle – Principle of least                                action  – Canonical transformations – Differential forms and Generating functions – Lagrange and Poisson brackets.

                        Numerical Analysis

                     Numerical solutions of algebraic and transcendental equations – Method of iiteration – Newton Raphson method – Rate of                                   convergence – Solution of Linear algebraic equations using Gauss elimination and Gauss – Seidel methods.

                     Finite differences – Lagrange, Hermite and Spline Interpolation, Numerical differentiation and integration – Numerical solutions of                         Ordinary differential equations using Picard, Euler, Modified Euler and Runge- Kutta methods.

Unit IX          OPERATIONS RESEARCH

                     Linear programming problem – Simplex Methods – Duality – Dual Simplex Method – Revised Simplex Method – Integer                                         Programming  Problem – Dynamic Programming – Non linear programming – Network Analysis – Directed Network – Max Flow Min                         Cut theorem – Queuing theory – Steady State solutions of M/M/1, M/M/1 with limited waiting space, M/M/C, M/M/C with limited                             waiting space, M/G/1 models – Inventory models – Deterministic models with and without shortages – Single Price break models.

Unit X            PROBABILITY THEORY

                     Sample space – Discrete Probability – Independent events – Baye’s theorem – Random variables and Distribution functions (Univariate and Multivariate) – Expectation and Moments – Moment Generating function – Characteristic functions and Cumulants –                     Independent Random variables – Marginal and conditional distributions – Probability inequalities (Tchebyshev, Markov, Jensen) – Modes of convergence, Weak and Strong laws of large numbers – Central limit  theorem (i.i.d case).

                     Probability distributions – Binomial, Poisson, Uniform, Normal, Exponential, Gamma, Beta, Cauchy distributions – Standard Errors –  Sampling distributions of t, F and Chi square and their uses in tests of significance – ANOVA – Large sample tests for mean and proportions.

CSIR NET | SET | TRB Maths

New Batch Admission Open . Online application form & details :
https://forms.gle/fket7eYdXd1kRwUt8 (Prof Suresh CSIR NET & SET Qualified and well experienced)


No comments:

Post a Comment

CSIR NET/JRF, SET, TN TRB & other Maths Online Coaching available.
Prof Suresh Maths Classes

Registration form

Popular Posts